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Evolution of time horizons in parallel and grid simulations
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We analyze the evolution of the local simulation tinieST) in parallel discrete event simulations. The new
ingredients introduced ar@) we associate the LST with the nodes and not with the processing elements, and
(ii) we propose to minimize the exchange of information between different processing elements by freezing the
LST on the boundaries between processing elements for some time of processing and then releasing them by
a wide-stream memory exchange between processing elements. The highlights of our appréadhkesps
the highest level of processor time utilization during the algorithm evolutionit takes a reasonable time for
the memory exchange, excluding the time consuming and complicated process of message exchange between
processors, andii ) the communication between processors is decoupled from the calculations performed on a
processor. The effectiveness of our algorithm grows with the number of rodekreads This algorithm
should be applicable for any parallel simulation with short-range interactions, including parallel or grid simu-
lations of partial differential equations.
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[. INTRODUCTION For example, consider a kinetic Monte Carlo simulation
) ) ) ) for a two-dimensional X L ferromagnetic Ising model on a
Parallel and grid computations for the simulation of thesquare lattice. The discrete events are spin flips. If the pro-
spatially decomposable models with Short-range interactiongram is to be simulated usi[‘]‘gDE processors, each processor
are arguably the most important topic in traditional appliedmay be allocated an equal spatially disjoint sublattice of
computer science today. This is because of their applicatiogpins. The average interval between two flips of the same
to the simulations of many models in science, engineeringspin varies for Metropolis-like algorithms from about 3.3
social science, manufacturing, and economics. We will firsMonte Carlo steps per spifMCS) at the critical pointT,
concentrate our discussion on parallel discrete event simula=2.269 to 142.9 MCS at the low temperatureTef0.5 [3].
tions (PDES, and will show the relationship to all short- (Here, the nearest-neighbor exchange in the square-lattice
ranged grid or parallel simulations in the last sections. Ising model has been set to unjtymplementations of such
PDES are the execution of a single discrete event simulaPDES for kinetic Ising models have been performed using
tion program on a parallel computer or on a cluster of comoth conservativ¢4] and optimistic[3] methods of preserv-
puters[1]. It is a challenging area of parallel computing andiNg causality in the simulations. In the conservative imple-
has numerous applications in physics, computer science, echentation, a PE waits until causality is not violated before it

nomics, and engineering. The number of applications ar@roceeds with its calculations. In the optimistic implementa-
! i tion, if causality may be violated, the calculation proceeds

constantly growing in areas where extensive dynamical pro i m nd if thi is incorrect the PE must
cesses need to be simulated, especially those requiring 4/"d SOMe guess, a S QUESS IS Incorrect the FE Mus
roll back to an earlier state before any causality violations

huge memory or wall-clock execution time. For such parallel
9 Y P were present.

simulations the system to be simulated is broken spatially In this paper, we investigate the dynamics of a number of
. PDES schemes. These parallel schemes are applicable to a

lated . di : v f Yuide range of stochastic cellular automata with local dynam-
ated system jumps discontinuously from one state 10 angq \yhere the discrete events are Poisson arrivals. We are

other, these jumps are called ament Thus the changes of ;1o rested in the evolution of the time horizon formed with

state occur at discrete points in simulated time, although thﬂwe LST of the nodes. In contrast with the previous work
time is considered to be continuous. The main challenge is tf‘3—9] where each PE 'manages only one node and commu-

emdently Process with discrete evervtdihoqtchanging the nication between PEs is implemented according to the con-
order n Wh'Ch the_: even_ts are processgd, I.€., preserving thE.E‘ervative schemégl], we generalize the scheme so each PE
causality in the simulation. One technique to help presenvg, ,.eqses a number of nodes that communicate conserva-
causality is to introduce the idea of a local virtual tif2é on ively, whereas nodes from different PEs communicate ac-
a node or PE, which leads to a surface of local SIrT‘“Iate@ording to either the conservative or optimistic scenario. The

times (LSTs). simulated time horizon is analogous to a growing surface.
The local time increments of the node correspond to the
deposition of some amounts of “material” at the given ele-

*Electronic address: lev@itp.ac.ru ment of the surface and the efficiengyhich is the fraction
"Electronic address: novotny@erc.msstate.edu of nonidling PE$ of the conservative scheme exactly corre-
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sponds to the density of local minima in the surface model. lantimessages have to be sent between processors, the corre-

was shown inf5], that the density of the local minima does sponding events are rejected. This leads to a rollback to an

not vanish when the number of PEs goes to infinity. Thisearlier time and state.

remarkable result insures that the simulated time horizon The possible scenarios can be understood by taking into

propagates with a nonzero velocity and that the comput@ccount the mapping of our problem onto surface growth

phase of the algorithm is asymptotically scalable. dynamics. The messages sent by one PE to another are noth-
The width of the time horizon in conservative PDES, aftering put the boundary conditions in our algorithm. In fact,

an early-time regime and before saturation, diverges with agyere are thregand not two possible boundary conditions
exponent consistent with the Kardar-Parisi-Zhang universal,, the most left and the most right nodes for the chain of

ity class[5]. This scaling property is valid for the averages a5 within a PE: continuous, free, and fixed. Continuous

over the ensemble of the surfaces, or for the ensemble of ﬂ}?oundary conditions imply that the boundary nodes would

time horizons in the language of PDES. It is |nformat|ve,¥0”0W the causality, taking messages from the neighbor node

however, to analyze the dynamics of a single realization o . :
the time horizon as well. A single realization is strongly af- Onr\t/g?ivnee'ggszor PE. So, this corresponds to the totally con-

fected by the surface fluctuations, and the evaluation of a¢ , . L )
A more interesting solution is with fixed boundaries. In

particular surface sometimes loses the full predictability. It is X
not clear how these fluctuations are connected with the tuithis case, a slope develops at the boundaries of each PE. The

bulence of the Burgers solitons, although there are som@ngle of the slope depends on the mean of the event time
similarities between LST horizon evolution and the evolutioninNtérvals and a nearly flat top grows according to the conser-
of the surface slope described by noisy Burgers equation¥ative rule. This solution can be interpreted as a fixed soliton
[10-12. of the corresponding Burgers equation.

In the original papef5] each PE simulates only one node _Free boundary qondltlons lead to an optimistic |mple_men-
in a conservative manner. The efficiency of this algorithm istation of the algorithm. The evolution of the time horizon
about 1/4, on average, i.e., one PE out of four is working afVith the free boundaries have mixed features compared with
any given time. Each PE sends messages to its neighboyge algorlthms.\_/wth continuous or fixed boundaries. This
about once in four time slices. One way to increase the utiPoundary condition will be analyzed elsewhere.
lization is to have each node contain a large portion of the The algorithm we discuss here is a new PDES implemen-
lattice, then the utilization can be increagdg6—9. tation _schem_e. The main purpose of the paper is a detailed

We analyze here a more efficient implementation of theanalysis of this PDES algorithm scheme with fixed boundary
Kornisset al.idea. Namely, we realize each node as a threadconditions. The paper is organized as follows. In Sec. Il we
Threads are distributed among processor elements so eat§view briefly the main ideas of PDES and the approach of
PE is responsible for some number of threads. The thread§ornisset al.[5]. In Sec. Il we introduce our algorithm and
within one PE communicate using the conservative pDEZliscuss its behavior for simple realizations in one dimension,
manner. Communications among threads on the same PE hwo d_imensions,.and for the solutic_)n of partial differential
not require the interprocessor communication latency timé&duations. We discuss the results in Sec. IV and provide a
(one needs only system calls within a)P&hile interproces- More general overview.
sor communication requires calls to the input-output parts
(I/Q) routines. Processes commqnicate within a single PE Il. CONSERVATIVE PDES
using system calls of the operating system. Interprocessor
communication requires some 1/O operations involved in ad- The PDES method is a tool capable of parallelizing any
dition to system calls. Threads were invented just to acceleriscrete event dynamic algorithm, even those which appear
ate communications of the partially independent parts of théo be intrinsically sequential ones. One example is the devel-
program. Their communication is supported by the kernel obpment of a kinetic Ising model algorithm by Lubachevsky
modern operation systenis3]. [14], and its successful implementatip#], which preserves

We have two choices for the interprocessor communicathe original dynamics of the model.
tion: either conservative or optimistid]. With the conser-
vative interprocessor communications, the evolution of the
time horizon will be exactly the same as [i], albeit the
utilization would be larger than 1/4 and close to unity for Kornisset al. [5] developed an approach for the analysis
large enough. Here ¢ is the number of nodes on a PE, so of such algorithms. They mainly considered the case of one-
the system size simulated is=¢Npg. We assume that the dimensional systems with only nearest-neighbor interactions
check of the local minima conditio¢io avoid causality vio- and periodic boundary conditionéSee Ref.[15] for two-
lationy between threadgénodes within a PEis negligibly  and three-dimensional caseBach site of the Ising model is
small in comparison with the time needed to process thassociated with one PE. Consequently the original model has
event. Npe=L PEs simulatingL nodes(or siteg. The number of

With optimistic interprocessor communications, the evo-nodes per PE aré=1. Update attempts at each node are
lution of the time horizon becomes more complex. The op-independent Poisson processes with the same (istean
timistic scenario[1] assumes that messages were not senactual simulation, the rate for the kinetic Monte Carlo for the
during some given time window. Causality is then checkedlsing model depends only on the energy change for a single
In the case where some node proceeds with broken causalitypin flip.) At each PE, the random time interva] between

A. PDES and Kardar-Parisi-Zhang equation
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two successive attempts is exponentially distributed. 2000k ' ' ' ' ]
Let us associate with PE numberthe value of a local o 1
simulated timer(t), where we denote by/the discrete time —— r#2
of the parallel steps simultaneously performed by each PE — 3 1
We start with zero LST on all PEs, i.es(0)=0, i 1500 | e— r#4 )
=1,2,...L. Fort=1 the LST evolves iteratively as o ::g
Tt + 1) =70+ (0 if 70 <min{r_y(0), 7,10}, °2 1000} ]

/
n(t+1) = 7(t) else, @ /}\ ) W\/\Aﬂﬂ

where 7; are random exponential variables. Each time, the ~ 500F /\/fH f\w \M\« Y f‘E
PE numbei advances in time and it sends messages to the I 'fv

right (i+1) and left(i—1) PEs with the time stamp of its LST oy A i N;j\ Mo,

7,(t). This insures that the updating procéssdoes not vio- of— “200-000 R0 B00550 8005001950000

late causality. This category of PDES is called tomserva-

tive PDES scenario.

The Kornisset al. algorithm is free of deadlock, since at FIG. 1. (Color onling Evolution of the width of the time hori-
least the PE with the absolute minimum LST can proceedzon for several single realizations of conservative PDES. Here there
The efficiency of the algorithm is the fraction of nonidling is one site per PE, ardpg=L=10". A heavier line makes run num-
PEs and exactly corresponds to the density of local minim&er four stand out from the others. In the electronic version, differ-
of the simulated time horizon. ent colors allow other runs to be easily distinguished from each

The iterative procesél) can be rewritten as other. Note thatv? has units of( ), while the units of time are in

ticks of the central processing units of the PEs.
7i(t+1) = 7(t) + O(7-4(t) = 7(1) O (7141 (t) = () (),

L
1 _
@ wP®)=7{ 2 [n -0 ), @
using the Heaviside step functid. =1
Introducing the local slopeg;=7—7_;, the density of where 7(t)=(1/L)2 7(t), grows for appropriately chosen

local minima can be written as times (before the LST saturatpas (WA(t)) =t with the ex-
1L ponent B close to the KPZ exponen3=1/3. Running a
= _ _ single PDES on a parallel computer, the LST horizon devel-
(e LE O~ AO1O1 da(V)] ® ops as a particular realization of the stochastic growth pro-
_ cess, not as the average process.
and its average It is known that the dynamics of solitons in the noisy
ar Burgers equation develops so-called Burgers turbulence
(u(®) =(0[- ¢i(1)10[ $i.1(D]) ) [10-13. Despite the similarity of the width evolution we

is the mean velocity of the time horizon, equal to have been unsuccessful in finding evidence for Burgers tur-

0.246 4107). Hence, the efficiency of the algorith(n this ~ bulence. The tail of the width distributiafrig. 1(a) of Kor-
worst-case scenaiidgs about 25%. nisset al] may be due to long-lived fluctuations, rather than

It was argued by Kornisst al. [5] that the coarse-grained du€ to moving solitons. Figure 1 shows the evolution of the
. oA . o time horizon width for some realizations of this conservative
slope of time horizor)(x, 1) in the continuum limit evaluates

PDES. A large fluctuation occurs in run number 4 at a time

according to the Burgers equatifbe] t~68 000. The momentary picture of the time horizon pro-
3:# 32(;5 073)2 file shown in Fig. 2 looks like a soliton. Nevertheless, a more
— = -\ (5) detailed analysis is needed to claim that it is indeed a soliton.
at X 28 This evidence would be difficult to obtain, since the noise in

the PDES conservative iterative procégs strongly masks

and the coarse-grained time horizen(¢=4t/dx) obeys the the expected solitonlike behavior.

Kardar-Parisi-ZhangkPZ) equation The large fluctuation in the time horizon profile
o Pr 97\2 (=1600 is comparable to the system sid,e=L=10", for
E = 22 <a_x) ; (6) the case shown in Fig. 2. In the next section, we will see that

the iterative proces$2) has steady-state solutions under

which should be extended with the noise to capture the flucSome boundary conditions, and the time horizon profile
tuations. shown in Fig. 2 looks similar to it.

Ill. FREEZE-AND-SHIFT ALGORITHM

B. Time horizon evaluation in conservative PDES A. Realizations of PDES
The Monte Carlo simulations of the proceds showed The conservative PDES algorithm of Kornissal. is an
[5] that the average width of time horizon idealized scheme, in which each PE manages only one pro-
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at a local minimum ig1—(u))¢. Since a PE can perform an

800 — t=4.0x10° w'=243 . .
— =60x10" W= 692 update as _Iong as any of its nodes are at a local minimum,
600+ o t=6.3x10" w =2055 the mean-field argument gives the utilization to be equal to
— t=8.0x105 w2= 277
400 t=1.0x10" w'=158 1_(1_<u»€_ (&

Our preliminary simulations show that the average utilization
depends on the type of noisall of which have mean noise
per step of unity. For uniformly distributed noise it i$u),
~0.2674). For Gaussian noise it &)= 0.2585). These
are to be compared with Poisson noise wiiu)
=0.246 4107). Note that both Gaussian and uniformly dis-
tributed noise have an average utilization larger than 1/4.

In the second realization of PDES, the surface nodes post-
. . pone messages within a discrete time window intetyal
8000 10000 The system would evaluate in the conservative PDES man-

ner the bulk nodes that lie at a distance from the surface

FIG. 2. (Color onling Time horizon profiles at the fixed mo- larger thandx(f—\%z—ﬂ;t)/Z as later glV(_—:‘n by expression
ments of time for the conservative PDES adge=L=10"for run  (11). After the timet, ~ ¢</4 [see expressio(®)] the freez-
number four of Fig. 1. Note that has units o ). The heavy line  INg Will reach the inner bulk nodes and the evaluation will
makes the large fluctuation stand out from the other configurationsStop- The system then could not propagate further without an

Only in the electronic version can the other surfaces be easily disexchange of the messages between PEs to preserve causality.
tinguished from each other. The whole system will at that time be “frozen.” The second

idea to implement this algorithm is the fast exchange of the
CeS_S and the LST is associated with the PE We eXterid this Messages_ We propose to do that by redistributing nodes be-
a different, more general scheme than is present in othg{yeen PEs. A simple realization will be discussed below. We
publications[6-9,13. , call this algorithm the “freeze-and-shift” algorithifFAs).
. Consider the nodes 1o be vertices O.f a fa”‘?'om graph. Thﬁote that theras algorithm effectively separates the inter-
links between the vertices are associated with the possibl rocessor communication from the computations progressing

ggnmr;r%rsiga\igr?ii’eztii]eilsl’isltr(]argn?nggﬁﬂ?l?g‘] Itrr?:%gr?ntggiv\ili/y n a PE. Thus, computer architectures that are capable of
within the cluster and minimizing the number of links be- simultaneously performing calculations and interprocessor

tween clusters. Let us call those nodes without external "nkscqmm_unlcatl_on can be u_sed effectively, even for pr_oblgms
With fine-grained parallelism. Another potential application

bulk nodes and the rest of the nodes surface nodes. Then, YOF the FAs algorithm is that it should allow simulations with
can map this random graph onto the parallel computer archi- 9

tecture associating one cluster of nodes with the one PE. ti?:-grriglned parallelism to be performed on calculations on

Practically, the nodes can be realized as thregd3. T%e t.hird ossible realization is the optimistic scenario of
Threads, sometimes called lightweight processes, share t ES in wf?ich one assumes that all nFiessa es come in an
same local memory with the other threads associated wit ! 9

the same PE. Hence, in a practical sense they do not requi e(der in which causality is not violated. After a discrete time

any extra communication between PEs to communicate wit bggivui:shteiglg?gkc;sg;ﬁtlItyT?]r;d Srgggszng?e:ﬁ;%?ii toal:]'_”
other threads on the same PE. Thus, the communication Y. P 9 9

el noces can be ogenzed n ine mos opima wa) 5575 o0 e avelnces of e e horzon
using the conservative PDES implementation. P

We have to note that in our approach, it is natural tothe one generated by thmas algorithm introduced above.

associate the LST with nodes and not with the PEs, in Conglearly, the optimistic scenario is more time consuming:

vast wih previous won5-0,19. Al odes cary s own 1o 1® A7UTESSage generaton ot o short process; an
LST, even those belonging to the same PE. ’ P

The communicton of surisce nodes can b realized i §2555L L 0 P 1o eseber o AP US|
number of ways. First, surface nodes can communicate in f'|ion ol? the first two scenarios Tr?e understanding of the time
conservative manner. The LST horizon will evolve as de- ) 9

scribed by the Kornisst al. scenario discussed in the previ- horizon avalanche process in the optimistic scenario can be

ous section. Nevertheless, the difference is that the averadréterestmg by itself, but will not be explored in this paper.

utilization is not given by expressiod). Let € be the num-
ber of nodes per PE, 4d0=Npgf. The probability of having a
chosen node not being at a local minimum of the LST is 1  In this subsection, for reasons of clarity, we discuss the
—(u). Assuming complete randomness among the LST of thgimplest case of theas algorithm, where the nodes effec-
nodes, i.e., using a mean-field type of argum@jtfor non-  tively form a one-dimensional graph. Despite this simplicity,
equilibrium properties of the time-evolving surface, gives thethe one-dimensional case of thes algorithm can be applied
probability, when choosing nodes, that all of them are not to the parallel simulation of one-dimensional partial differ-

1 1 1
2000 4000 6000

NPE

B. Time horizon evolution for the Fas algorithm
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t 500
h Y
4004
0
@ 1 2 3 456 7 8 9 101112 300 Y
t i i ; *’ /
. . ; 2004
0 L i : 100
b) 1 2 3 456 7 8 9 101112
FIG. 3. Possible realizations of the first two steps of the time 0

v T T T v T v T v 1
horizon evaluation: A conservative algorithm wilpe=L=12 and 0 200 400 node 600 800 1000
€=1 (top) and theras algorithm withNpg=3 with £=4 nodes each
(L=Npgf=12). FIG. 4. Profile of the LST off =1000 nodes with fixed bound-

aries at the leftmost and rightmost positions.

ential equationgsee Sec. IY. The one-dimensionaas al-

gorithm can also be used in simulations of systems that havig seen in Fig. 4. Note that this profile would also develop if

been organized into disjoint spatial subsystem slices, withhe algorithm always added unity to each updated node, as

the slices forming a one-dimensional graph. would be done in simulations of partial differential equations
Let us assume there afenodes(or threads on each of ?see later op

the Npe processor elements. For the case of Ising model The process of growth will stop at the moment the time

simulations, each node carries just one spin of the system ¢forizon reaches the hill knap. This average time can be cal-

L=¢Npg spins. Nodes within a PE communicate in the con-cylated by assuming that it is given by the same time as the

servative manner. The three possible ways of the inter-Plggse where each node update advancbg one unit. This
communication correspond to different boundary conditionsgiyes that

the conservative scenario is associated with continuous
boundary conditions; theas scenario corresponds to fixed )
boundary conditions; and the optimistic scenario—to free tl:z; = 4 9
boundary conditiongand associated LST rollbacks =t

As we mentioned already, our implementation of conserAt that time, the LST of each individual PE will look like a
vative PDES is analogous to that of the Kornéfsal. (=1  sawtooth(Fig. 4). At time t; the entire time horizon will look
implementation5] and further extensions to largér[6-9]. like a saw withNpg teeth. It is very important to realize that
The only difference, and a major difference for algorithmup to that time, all PEs were, with high probability, busy with
design, is that in our case, the LST is associated with than efficiency of ong18].
nodes and not with the PEs. After a timet, the profile of the time horizon stops devel-

In the case of theas algorithm, the evolution of the LST oping. Thus, the PE can on average perfoymode updates
horizon is quite different. In Fig. 3 the two first steps of the before the LST profile freezes. Figure 4 shows a realization
possible evolution of the time horizon are sketched both foof this frozen steady-state profile. The derivative of the pro-
the case of the conservative scenario withl and for the file ¢,=7.,—7 will represent a kink, the soliton-antisoliton
FAS scenario with¢ =4. Initially, at the timet=0 all =0. In  pair. Contrary to the Burgers equati¢h?], these kinks are
the first step of PDES, all the nodes proceed—the conditiomot moving but are in the steady state. We have an interesting
(1) is fulfilled for all nodes. The difference between the tworesult: by fixing the boundaries, we select the soliton-
scenarios starts just after the first evdirhe step. In the top  antisoliton solution of Eq(2).
of Fig. 3, all the local minima will advance in the conserva- The mean value of the LST horizon fo=t; can also be
tive scenario. For the frozen boundaries of the algorithm,  calculated. Consider the non-random case, starting with a flat
the left and right boundaries on each PE are fixed, so thesgistribution for7=0. The time for the LST horizon to reach a
minima cannot proceed. As tlras algorithm progresses, the plateau with all middle nodes at the same valuer &f
LST starts to develop a slope with an average angl&he .
average value of this angle depends only on the mean of the t=> (t-1) ~ 7t - 2
noise for a single time slice, with its tangent being equal to - '
that mean. This is because proceeding from a frozen node,
the question is: given that the next node can exceed the valuhis equation can be solved ferusing the quadratic equa-
of 7 on the frozen node in the next time step, what is thetion and choosing the physical root sinee: €/2, giving
average dist,ance at which its valgeqofreezes ahgad of thg r=(6- V,m)/z_ (11)
frozen node’sr? Since we are using a mean noise of unity,
the average angle will bg¢= /4 for all types of noise. This For this configuration, the average value of the LST is

g2

(10
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1000

800+

600

400+

200+

400 600 800 1000

node

0 200
FIG. 5. Profile of the LST o =1000 nodes at the timtg after

shifting by half(bottom ling and at the time values 1.4t;, =1.8,,
=~2.5%,, and 3; from the second bottom to the top.

)
<T>——€ -

(12)
Then, substituting fot- from Eq.(11) gives an expression for
the time dependence f@r) for times O<t<t,. In a similar
fashion an expression for the time evolution{@f) can be
derived.

At time t; the LST horizon is frozen, and the question is
how to proceed further with the simulation. The solution we

PHYSICAL REVIEW E70, 026703(2004)

5000
4500 :
4000 —.
3500 —-
3000 —-
2500 -
2000 —-
1500 -.
1000 -

500 1

1000 2000 3000 4000 5000
FIG. 6. Profile of a LST with¢=1000 nodes in each of the

NPE:5 PEs.

a fruitful subject for future research. Figure 7 seems to show
that in theFAs algorithm one can limit(effectively “satu-
rate”) the size of the surface width. Proven ways of saturat-
ing the surface width in conservative PDES simulations in-
clude imposing a fixed constraint on the widff] and
imposing small-world connections between PHS]. Al-
though the freeze-and-shift method damps out the surface
width, much larger studies would be required to see whether
or not the governing universality class of the interface is still
the KPZ universality class and tiras algorithm just leads to
a coarse-grained length in the KPZ equation.

The time windowt,, for the freeze-and-shift algorithm can

propose is to redistribute the nodes between the PEs. F@e chosen as any value in the intervat i, <t,. We can

example, let us shift them b§/2 to the right(or left), so the

tops of the hills(sawteeth will be at the boundaries of the

processors and fixed for the next time window processing.
Further evolution of the time horizon is illustrated in Fig.

choose them shorter thap, for example, equal td,/2 as
shown in Figs. 8 and 9 for the even and odd shifts, respec-
tively. The difference between the maximum and minimum
possible values of the LST will be smaller than in the case of

5. The lowest curve is the LST horizon depicted on Fig. 4jargert,,.

and cyclically shifted by/2. The LST horizon will grow, on
average, until the time,~3t,=3¢?/4, at which time the
next steady-state frozen solution will be reackine highest
curve in Fig. 5.

The process can be repeated by alternating the freezing
the boundaries for a time window interval not longer thén 2
and shifting nodes between PEs B§2 for each time win-
dow. Figure 6 illustrates this process fo+ 1000 nodes and
Npe=5 for ten shift cycles with the time window oftg
Consequently, there are aboutt2Gime steps(discrete
events.

The square widttw?(t) of the time horizonLST) seems
to evolve periodically with time between a minimum and a

maximum value. The evidence for this is seen in Fig. 7 in

which the LST evolution ofw?) for £¢=10° and Npg=5 is
shown. For the time betweerr2Xx 10* and up to thet=2
X 10°, the LST horizon width grows with the effective expo-
nentz=3/2, it then stops at the shift moment, and oscilla-

tions start. This exponent is not associated with any stochas
tic process, but reflects the deterministic process of the
in accordance with expressions

sawtooth’s formation,
(9~(12). Probably, the maximum values of the LST width as
a function ofNpg would follow the KPZ exponent, and this is

C. FAs on a two-dimensional lattice
The next interesting realization of the freeze-and-shift al-

gerithm is the application to a two-dimensional model. Sup-

100000 T T T

10000

1000 |

100

square width

100000
t

L
1e+06

FIG. 7. The square of the LST width of the process depicted in
Fig. 6.
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FIG. 8. Profile of the LST fo=1000 nodes on each &pg FIG. 9. Profile of the LST off=1000 nodes in each of the
=5 PEs. Curves from bottom to top are the profilestfpr( dis- Npg=5 PEs. Curves from bottom to top are the profiles tipe ¢
crete events at the time moments (2k-1)¢, 2k-1=1,3,5,7,9. discrete events at the timgs=2k¢, 2k=2,4,6,8,10.

pose we hav®pg, each of which will simulate & X ¢ block  is achieved at a time given by the volume of the pyramid,
of nodes(spins in kinetic Monte Carlo for the Ising moglel t,_. .~ ¢3/12.

The total system size i6?=Npgf?, whereNpg should be a We have to note that up to the tinie ., the efficiency of
perfect square. We associatésites(sping with ¢2 threads  the Fas algorithm is practically unity. Shifting the nodes be-
running on each of th&lpg PEs. The evolution of the LST tween the PEs can now be accomplished in many different
horizon is described by the two-dimensional iterative processvays. Shifting the nodes b¥/2 in both directions of the

[compare with expressiof?)] lattice is equivalent to the sending of postponed messages in
the language of PDES. Then, the LST frozen profile will take
7, (t+ 1) =7,;(t) + OL7_1 (1) — 7 ;()]O[7,15(1) — 7 (V)] a time of doublet,_ before reaching the second frozen
X O[71(t) = 7, (D107 1un(t) = 7 (D] (D), steady-state position. Repeating this process of freezing and

shifting, we can evolve our nodes in parallel as far as we
(13)  wish. As in the one-dimensionahs algorithm, the time be-
_ ) . _ tween shifting can be any value given by@,<t,_s Note

with the product of four® functions at the right-hand side 4t this shifting can usually be implemented very effectively
and(i,]) are coordinates of the lattice edges. Ferl one  on modern computers that have fast methods of copying
expects that the average speed of time horizon for the coRghole blocks of memory between processors, and may have
servative PDES scenario will be approximatély)~1/8,  the ability to simultaneously perform calculations and mes-
two times slower than in the one-dimensional case. Our comsage passing.
puter simulation givegu,)=0.120%2) for a Poisson distri-

bUtIOﬂ Of PDES al’rlva| tlmeS W|th Un't mean Value Th'S D. FAS, part|a| differential equations’ gnd Compuung
value again depends on the distribution law of the random
numbers used. The discussed algorithms can also be effectively applied

Figure 10 shows the steady-state solution of pro¢&3s to numerical solutions for solving partial differential equa-
which looks like a pyramid with the slope 1/2. This solution tions. In this case, one has to solve iteratively finite-

LST
N
o

FIG. 10. Steady-state profile of the LST on a
two-dimensional square lattice with linear num-
ber of nodes =200.
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difference equations defined on the lattice. For simplicity we
will discuss partial differential equations of second order in
the one-dimensional case. The common form can be writter
as

#i(m) = F(gs(m), i1 (M), i1 (M), i(m— 1),
Yioi(m=1),4,1(M=1);A,0), (14)

where the index is associated with the space variable, the
space increment ig, andm is associated with the time vari-
able for which the increment iA.

We have to divide the entire one-dimensional lattice into
Npg pieces, each witld lattice nodes, and then associate each
piece with a single PE. The LST time increment is equal to FIG. 11. Nodes manifold partitioning into eight groups of bulk
A, and is not random in this case. We freeze the nodes at th@des, each associated with a single PE during the frozen phase of
boundaries for each PE. The propagation of the algorithm oihe Fas algorithm.
each PE will be the normal one, except the nodes that do not
know the values of their own or neighboring nodes at both IV. DISCUSSION

timesm andm+A will be frozen. This condition of the fro- We have proposed an alternative algorithm for parallel
zen boundaries between neighboring PEs will form a LSTdiscrete event simulatiof®DES which allows for an effec-
horizon on each PE. For each time stepthe space coordi- tive realization on the parallel computers, clusters of com-
nates of the LST will bed. If the calculation of the right- puters, and in grid computing. We call this algorithm tias
hand side of Eq(14) needs a large time compared with (freeze-and-shift algorithm. It effectively decouples the
memory shifting between PEs, this algorithm could be verycomputation phase and communication phase for these par-
effectively implemented on a parallel computer architectureallel computations. This allows, for example, the program-

The scheme can be generalized to large dimensions of theer to utilize fast block-memory-transfer commands. Fur-
lattice, i.e., to many-dimensional partial differential equa-thermore, it should allow the efficient simultaneous
tions, in the manner demonstrated in the previous subsectiagkecution of both computation and communication hardware
for FAsS PDES. when they are performed by separate hardware.

Grid computing should enable geographically distributed There are several essential points of eas algorithm.
heterogeneous computations to be performed if appropriateirst, we associate a LST with the nodes rather than indi-
algorithms are available. For previous implementations withvidual PEs. Second, we group the nodes using someseke
fine-grained parallelism, such algorithms are not availablelaten and associate each group with a REBually the pro-

For example, for conservative PDES simulations imple-cessor running the one procgs¥he nodes are realized as
mented with one virtual time per PE, the calculation on athreads, which share the same memory within one process.
particular PE halts at irregular timéshenever the algorithm  This allows for a fast realization of the conservative PDES
hits the surface node of the REHowever, conservative rules within a PE. PEs do not communicate with other PEs
PDES implemented with one virtual time per PE allows forfor some time interval window,, (the frozen part of the

an approximately regular and calculable number of timealgorithm), and after that time, the message exchange is re-
stepst that a PE can perform before it needs to halt to pre-alized as part of the memory shifting between R&g shift
serve causality. Furthermore, tRes algorithm allows a de- part of the algorithm The last part can be very efficiently
coupling of calculation and the communication. Both of realized on some parallel architectures. The width of the LST
these facts can be important for grid computing. One exhorizon, which characterizes the difference in the LST be-
ample is since grid communication paths are used by mangveen different shifts is under control and depends on the
people, the time for communication between grid computersiumber of node€ per PE. Theras algorithm guarantees the

is not constant, and the communication between grid comefficiency of the simulations and idleness of PEs should be
puters can take place without the calculations on a computetearly equal to zero for balanced simulations.

having to wait for another computer. Furthermore, the com- The general scheme can be sketched as in Fig. 11, where
munication may be timed so it is performed when others argve have partitioned the nodes into groupssociated with
historically utilizing the communications network the least PEs during the freeze part of thes algorithm) and we
(say during nights or weekendsThus theras algorithm  freeze development of those nodes within the interfaces. The
should allow grid computations to be performed for PDESefficiency of the algorithm depends on the smallness of the
simulations and for numerical solutions of partial differential ratio of the interface area to the bulk area, and on the alter-
equations. nating interface area we have to create by the shifting of
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